Plane of nutrition prepartum alters hepatic gene expression and function in dairy cows as assessed by longitudinal transcript and metabolic profiling.
نویسندگان
چکیده
Liver metabolism and health in dairy cows during the periparturient period are affected by plane of nutrition prepartum. Long-term adaptations in hepatic gene expression are important for complete understanding of liver function. We examined temporal gene expression profiles during the dry period and early lactation in liver of Holstein cows fed moderate dietary energy ad libitum or restricted during the entire dry period using a microarray consisting of 7,872 annotated cattle cDNA inserts and quantitative RT-PCR. We identified 85 genes with expression patterns that were affected by level of energy intake prepartum over time. Restricted energy intake prepartum resulted in more pronounced upregulation of genes with key functions in hepatic fatty acid oxidation (CPT1A, ADIPOR2), gluconeogenesis (PC), and cholesterol synthesis (SC4MOL). Ad libitum feeding upregulated a number of genes associated with liver triacylglycerol synthesis (DGAT1) and proinflammatory cytokines (TNFAIP3). Genomic responses to ad libitum feeding were accompanied by increased incorporation of palmitate to esterified products in vitro and increased liver triacylglycerol concentration in vivo. Overall, gene expression profiles due to plane of nutrition prepartum partly explained differences in rates of liver palmitate metabolism, blood serum metabolite concentrations, and liver tissue triacylglycerol concentration. Our data show that moderate overfeeding of energy in the dry period, in the absence of obesity, results in transcriptional changes predisposing cows to fatty liver and perhaps compromising overall liver health during the periparturient period. In this context, controlled energy intake may confer an advantage to the cow by triggering hepatic molecular adaptations well ahead of parturition.
منابع مشابه
Dairy cows experience selective reduction of the hepatic growth hormone receptor during the periparturient period.
At parturition, dairy cows experience a 70% reduction in plasma IGF-I. This reduction coincides with decreased abundance of GHR1A, the liver-specific transcript of the growth hormone receptor (GHR) gene, suggesting impaired growth hormone-dependent synthesis of IGF-I. It is not immediately obvious that the periparturient reduction in GHR1A is sufficient to reduce hepatic GHR abundance. This is ...
متن کاملP-64: The Relationship between Polymorphism in Gene of Insulin-Like Growth Factor-I and The Serum Periparturient Concentration in Holstein Dairy Cows
Background: One of the most important metabolic factors affecting the reproductive activity is insulin-like growth factor-I (IGFI) concentration changes after calving. Recently, Maj et al. (2008) discovered a significant association between the IGF-I genotypes based on the 5'-untranslatedregion (5'-UTR) of IGF-I gene and the IGF-I blood level. The objective of this study is to investi...
متن کاملRelationship between Insulin to Glucagon Ratio and Metabolic Parameters in Primiparous and Multiparous Dairy Cows in Transitional Period
In order to investigate the relationship between insulin to glucagon ratio and metabolic factors in transitional period of dairy cows, 28 cows heifers with body condition score of 3.25- 3.75 were selected. Dairy cows received close up diet, from 21 days prepartum until parturition and lactation diet according to nutritional requirements after parturition. Blood was sampled at 10 days before and...
متن کاملHeat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows.
Heat stress (HT) and photoperiod affect milk production and immune status of dairy cows. The objective was to evaluate the effects of HT abatement prepartum under controlled photoperiod on hepatic metabolic gene expression and cellular immune function of periparturient Holstein cows (n=21). Cows were dried off 46 d before expected calving date and assigned to treatments by mature equivalent mil...
متن کاملOverfeeding Dairy Cattle During Late-Pregnancy Alters Hepatic PPARα-Regulated Pathways Including Hepatokines: Impact on Metabolism and Peripheral Insulin Sensitivity
Hepatic metabolic gene networks were studied in dairy cattle fed control (CON, 1.34 Mcal/kg) or higher energy (overfed (OVE), 1.62 Mcal/kg) diets during the last 45 days of pregnancy. A total of 57 target genes encompassing PPARα-targets/co-regulators, hepatokines, growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, lipogenesis, and lipoprotein metabolism were evaluated on -14, 7, 14...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2006